Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nematol ; 56(1): 20240009, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495933

RESUMO

Parelaphostrongylus tenuis causes ungulate morbidity and mortality in eastern and central North America, but no reference genome sequence exists to facilitate research. Here, we present a P. tenuis genome assembly and annotation, generated with PacBio and Illumina technologies. The assembly is 491 Mbp, with 7285 scaffolds and 185 kb N50.

2.
Lancet Microbe ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38527471

RESUMO

INTRODUCTION: Continued SARS-CoV-2 infection among immunocompromised individuals is likely to play a role in generating genomic diversity and the emergence of novel variants. Antiviral treatments such as molnupiravir are used to mitigate severe COVID-19 outcomes, but the extended effects of these drugs on viral evolution in patients with chronic infections remain uncertain. This study investigates how molnupiravir affects SARS-CoV-2 evolution in immunocompromised patients with prolonged infections. METHODS: The study included five immunocompromised patients treated with molnupiravir and four patients not treated with molnupiravir (two immunocompromised and two non-immunocompromised). We selected patients who had been infected by similar SARS-CoV-2 variants and with high-quality genomes across timepoints to allow comparison between groups. Throat and nasopharyngeal samples were collected in patients up to 44 days post treatment and were sequenced using tiled amplicon sequencing followed by variant calling. The UShER pipeline and University of California Santa Cruz genome viewer provided insights into the global context of variants. Treated and untreated patients were compared, and mutation profiles were visualised to understand the impact of molnupiravir on viral evolution. FINDINGS: Patients treated with molnupiravir showed a large increase in low-to-mid-frequency variants in as little as 10 days after treatment, whereas no such change was observed in untreated patients. Some of these variants became fixed in the viral population, including non-synonymous mutations in the spike protein. The variants were distributed across the genome and included unique mutations not commonly found in global omicron genomes. Notably, G-to-A and C-to-T mutations dominated the mutational profile of treated patients, persisting up to 44 days post treatment. INTERPRETATION: Molnupiravir treatment in immunocompromised patients led to the accumulation of a distinctive pattern of mutations beyond the recommended 5 days of treatment. Treated patients maintained persistent PCR positivity for the duration of monitoring, indicating clear potential for transmission and subsequent emergence of novel variants. FUNDING: Australian Research Council.

3.
Mol Ecol ; 33(2): e17223, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014746

RESUMO

The study of microbiomes across organisms and environments has become a prominent focus in molecular ecology. This perspective article explores common challenges, methodological advancements, and future directions in the field. Key research areas include understanding the drivers of microbiome community assembly, linking microbiome composition to host genetics, exploring microbial functions, transience and spatial partitioning, and disentangling non-bacterial components of the microbiome. Methodological advancements, such as quantifying absolute abundances, sequencing complete genomes, and utilizing novel statistical approaches, are also useful tools for understanding complex microbial diversity patterns. Our aims are to encourage robust practices in microbiome studies and inspire researchers to explore the next frontier of this rapidly changing field.


Assuntos
Bactérias , Microbiota , Microbiota/genética , Ecologia
4.
Proc Biol Sci ; 290(2007): 20230951, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37727089

RESUMO

Predicting what factors promote or protect populations from infectious disease is a fundamental epidemiological challenge. Social networks, where nodes represent hosts and edges represent direct or indirect contacts between them, are important in quantifying these aspects of infectious disease dynamics. However, how network structure and epidemic parameters interact in empirical networks to promote or protect animal populations from infectious disease remains a challenge. Here we draw on advances in spectral graph theory and machine learning to build predictive models of pathogen spread on a large collection of empirical networks from across the animal kingdom. We show that the spectral features of an animal network are powerful predictors of pathogen spread for a variety of hosts and pathogens and can be a valuable proxy for the vulnerability of animal networks to pathogen spread. We validate our findings using interpretable machine learning techniques and provide a flexible web application for animal health practitioners to assess the vulnerability of a particular network to pathogen spread.


Assuntos
Epidemias , Animais , Epidemias/veterinária , Aprendizado de Máquina , Rede Social , Software
5.
Ecol Lett ; 26(10): 1780-1791, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37586885

RESUMO

Species functional traits can influence pathogen transmission processes, and consequently affect species' host status, pathogen diversity, and community-level infection risk. We here investigated, for 143 European waterbird species, effects of functional traits on host status and pathogen diversity (subtype richness) for avian influenza virus at species level. We then explored the association between functional diversity and HPAI H5Nx occurrence at the community level for 2016/17 and 2021/22 epidemics in Europe. We found that both host status and subtype richness were shaped by several traits, such as diet guild and dispersal ability, and that the community-weighted means of these traits were also correlated with community-level risk of H5Nx occurrence. Moreover, functional divergence was negatively associated with H5Nx occurrence, indicating that functional diversity can reduce infection risk. Our findings highlight the value of integrating trait-based ecology into the framework of diversity-disease relationship, and provide new insights for HPAI prediction and prevention.


Assuntos
Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Ecologia , Europa (Continente)/epidemiologia
6.
J Wildl Dis ; 59(4): 640-650, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540143

RESUMO

Our understanding of wildlife multihost pathogen transmission systems is often incomplete due to the difficulty of observing contact between hosts. Understanding these interactions can be critical for preventing disease-induced wildlife declines. The proliferation of high-throughput sequencing technologies provides new opportunities to better explore these cryptic interactions. Parelaphostrongylus tenuis, a multihost parasite, is a leading cause of death in some moose (Alces alces) populations threatened by local extinction in the midwestern and northeastern US and southeastern Canada. Moose contract P. tenuis by consuming infected gastropod intermediate hosts, but little is known about which gastropod species moose consume. To gain more insight, we used a genetic metabarcoding approach on 258 georeferenced and temporally stratified moose fecal samples collected May-October 2017-20 from a declining population in the north-central US. We detected moose consumption of three species of gastropods across five positive samples. Two of these (Punctum minutissimum and Helisoma sp.) have been minimally investigated for the ability to host P. tenuis, while one (Zonitoides arboreus) is a well-documented host. Moose consumption of gastropods documented herein occurred in June and September. Our findings prove that moose consume gastropod species known to become infected by P. tenuis and demonstrate that fecal metabarcoding can provide novel insight on interactions between hosts of a multispecies pathogen transmission system. After determining and improving test sensitivity, these methods may also be extended to document important interactions in other multihost disease systems.


Assuntos
Cervos , Metastrongyloidea , Animais , Código de Barras de DNA Taxonômico/veterinária , Animais Selvagens , DNA , Cervos/parasitologia , Fezes/parasitologia
7.
Evol Appl ; 16(7): 1316-1327, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37492149

RESUMO

Infectious diseases are a major threat for biodiversity conservation and can exert strong influence on wildlife population dynamics. Understanding the mechanisms driving infection rates and epidemic outcomes requires empirical data on the evolutionary trajectory of pathogens and host selective processes. Phylodynamics is a robust framework to understand the interaction of pathogen evolutionary processes with epidemiological dynamics, providing a powerful tool to evaluate disease control strategies. Tasmanian devils have been threatened by a fatal transmissible cancer, devil facial tumour disease (DFTD), for more than two decades. Here we employ a phylodynamic approach using tumour mitochondrial genomes to assess the role of tumour genetic diversity in epidemiological and population dynamics in a devil population subject to 12 years of intensive monitoring, since the beginning of the epidemic outbreak. DFTD molecular clock estimates of disease introduction mirrored observed estimates in the field, and DFTD genetic diversity was positively correlated with estimates of devil population size. However, prevalence and force of infection were the lowest when devil population size and tumour genetic diversity was the highest. This could be due to either differential virulence or transmissibility in tumour lineages or the development of host defence strategies against infection. Our results support the view that evolutionary processes and epidemiological trade-offs can drive host-pathogen coexistence, even when disease-induced mortality is extremely high. We highlight the importance of integrating pathogen and population evolutionary interactions to better understand long-term epidemic dynamics and evaluating disease control strategies.

8.
mBio ; 14(4): e0071523, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37439571

RESUMO

Wildlife is the source of many emerging infectious diseases. Several viruses from the order Nidovirales have recently emerged in wildlife, sometimes with severe consequences for endangered species. The order Nidovirales is currently classified into eight suborders, three of which contain viruses of vertebrates. Vertebrate coronaviruses (suborder Cornidovirineae) have been extensively studied, yet the other major suborders have received less attention. The aim of this minireview was to summarize the key findings from the published literature on nidoviruses of vertebrate wildlife from two suborders: Arnidovirineae and Tornidovirineae. These viruses were identified either during investigations of disease outbreaks or through molecular surveys of wildlife viromes, and include pathogens of reptiles and mammals. The available data on key biological features, disease associations, and pathology are presented, in addition to data on the frequency of infections among various host populations, and putative routes of transmission. While nidoviruses discussed here appear to have a restricted in vivo host range, little is known about their natural life cycle. Observational field-based studies outside of the mortality events are needed to facilitate an understanding of the virus-host-environment interactions that lead to the outbreaks. Laboratory-based studies are needed to understand the pathogenesis of diseases caused by novel nidoviruses and their evolutionary histories. Barriers preventing research progress include limited funding and the unavailability of virus- and host-specific reagents. To reduce mortalities in wildlife and further population declines, proactive development of expertise, technologies, and networks should be developed. These steps would enable effective management of future outbreaks and support wildlife conservation.

9.
Immunol Invest ; 52(6): 661-680, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37267050

RESUMO

The wild Tasmanian devil (Sarcophilus harrisii) population has suffered a devastating decline due to two clonal transmissible cancers. The first devil facial tumor 1 (DFT1) was observed in 1996, followed by a second genetically distinct transmissible tumor, the devil facial tumor 2 (DFT2), in 2014. DFT1/2 frequently metastasize, with lymph nodes being common metastatic sites. MHC-I downregulation by DFT1 cells is a primary means of evading allograft immunity aimed at polymorphic MHC-I proteins. DFT2 cells constitutively express MHC-I, and MHC-I is upregulated on DFT1/2 cells by interferon gamma, suggesting other immune evasion mechanisms may contribute to overcoming allograft and anti-tumor immunity. Human clinical trials have demonstrated PD1/PDL1 blockade effectively treats patients showing increased expression of PD1 in tumor draining lymph nodes, and PDL1 on peritumoral immune cells and tumor cells. The effects of DFT1/2 on systemic immunity remain largely uncharacterized. This study applied the open-access software QuPath to develop a semiautomated pipeline for whole slide analysis of stained tissue sections to quantify PD1/PDL1 expression in devil lymph nodes. The QuPath protocol provided strong correlations to manual counting. PD-1 expression was approximately 10-fold higher than PD-L1 expression in lymph nodes and was primarily expressed in germinal centers, whereas PD-L1 expression was more widely distributed throughout the lymph nodes. The density of PD1 positive cells was increased in lymph nodes containing DFT2 metastases, compared to DFT1. This suggests PD1/PDL1 exploitation may contribute to the poorly immunogenic nature of transmissible tumors in some devils and could be targeted in therapeutic or prophylactic treatments.Abbreviations: PD1: programmed cell death protein 1; PDL1: programmed death ligand 1; DFT1: devil facial tumor 1; DFT2: devil facial tumor 2; DFTD: devil facial tumor disease; MCC: Matthew's correlation coefficient; DAB: diaminobenzidine; ROI: region of interest.


Assuntos
Antígeno B7-H1 , Neoplasias Faciais , Humanos , Antígeno B7-H1/genética , Receptor de Morte Celular Programada 1/genética , Linfonodos/patologia , Microambiente Tumoral
10.
Mol Ecol ; 32(14): 4078-4092, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37173817

RESUMO

Untangling how factors such as environment, host, associations among bacterial species and dispersal predict microbial composition is a fundamental challenge. In this study, we use complementary machine-learning approaches to quantify the relative role of these factors in shaping microbiome variation of the blacklegged tick Ixodes scapularis. I. scapularis is the most important vector for Borrelia burgdorferi (the causative agent for Lyme disease) in the U.S. as well as a range of other important zoonotic pathogens. Yet the relative role of the interactions between pathogens and symbionts compared to other ecological forces is unknown. We found that positive associations between microbes where the occurrence of one microbe increases the probability of observing another, including between both pathogens and symbionts, was by far the most important factor shaping the tick microbiome. Microclimate and host factors played an important role for a subset of the tick microbiome including Borrelia (Borreliella) and Ralstonia, but for the majority of microbes, environmental and host variables were poor predictors at a regional scale. This study provides new hypotheses on how pathogens and symbionts might interact within tick species, as well as valuable predictions for how some taxa may respond to changing climate.


Assuntos
Borrelia burgdorferi , Borrelia , Ixodes , Doença de Lyme , Microbiota , Animais , Doença de Lyme/microbiologia , Ixodes/microbiologia , Borrelia burgdorferi/genética , Microbiota/genética
11.
Virus Evol ; 9(1): veac122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36694819

RESUMO

Spatially heterogeneous landscape factors such as urbanisation can have substantial effects on the severity and spread of wildlife diseases. However, research linking patterns of pathogen transmission to landscape features remains rare. Using a combination of phylogeographic and machine learning approaches, we tested the influence of landscape and host factors on feline immunodeficiency virus (FIVLru) genetic variation and spread among bobcats (Lynx rufus) sampled from coastal southern California. We found evidence for increased rates of FIVLru lineage spread through areas of higher vegetation density. Furthermore, single-nucleotide polymorphism (SNP) variation among FIVLru sequences was associated with host genetic distances and geographic location, with FIVLru genetic discontinuities precisely correlating with known urban barriers to host dispersal. An effect of forest land cover on FIVLru SNP variation was likely attributable to host population structure and differences in forest land cover between different populations. Taken together, these results suggest that the spread of FIVLru is constrained by large-scale urban barriers to host movement. Although urbanisation at fine spatial scales did not appear to directly influence virus transmission or spread, we found evidence that viruses transmit and spread more quickly through areas containing higher proportions of natural habitat. These multiple lines of evidence demonstrate how urbanisation can change patterns of contact-dependent pathogen transmission and provide insights into how continued urban development may influence the incidence and management of wildlife disease.

12.
Front Vet Sci ; 9: 940007, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157183

RESUMO

Identifying drivers of transmission-especially of emerging pathogens-is a formidable challenge for proactive disease management efforts. While close social interactions can be associated with microbial sharing between individuals, and thereby imply dynamics important for transmission, such associations can be obscured by the influences of factors such as shared diets or environments. Directly-transmitted viral agents, specifically those that are rapidly evolving such as many RNA viruses, can allow for high-resolution inference of transmission, and therefore hold promise for elucidating not only which individuals transmit to each other, but also drivers of those transmission events. Here, we tested a novel approach in the Florida panther, which is affected by several directly-transmitted feline retroviruses. We first inferred the transmission network for an apathogenic, directly-transmitted retrovirus, feline immunodeficiency virus (FIV), and then used exponential random graph models to determine drivers structuring this network. We then evaluated the utility of these drivers in predicting transmission of the analogously transmitted, pathogenic agent, feline leukemia virus (FeLV), and compared FIV-based predictions of outbreak dynamics against empirical FeLV outbreak data. FIV transmission was primarily driven by panther age class and distances between panther home range centroids. FIV-based modeling predicted FeLV dynamics similarly to common modeling approaches, but with evidence that FIV-based predictions captured the spatial structuring of the observed FeLV outbreak. While FIV-based predictions of FeLV transmission performed only marginally better than standard approaches, our results highlight the value of proactively identifying drivers of transmission-even based on analogously-transmitted, apathogenic agents-in order to predict transmission of emerging infectious agents. The identification of underlying drivers of transmission, such as through our workflow here, therefore holds promise for improving predictions of pathogen transmission in novel host populations, and could provide new strategies for proactive pathogen management in human and animal systems.

13.
Virus Evol ; 8(1): veac040, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677574

RESUMO

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to be responsible for an unprecedented worldwide public health and economic catastrophe. Accurate understanding and comparison of global and regional evolutionary epidemiology of novel SARS-CoV-2 variants are critical to guide current and future interventions. Here, we utilized a Bayesian phylodynamic pipeline to trace and compare the evolutionary dynamics, spatiotemporal origins, and spread of five variants (Alpha, Beta, Delta, Kappa, and Eta) across the Arabian Peninsula. We found variant-specific signatures of evolution and spread that are likely linked to air travel and disease control interventions in the region. Alpha, Beta, and Delta variants went through sequential periods of growth and decline, whereas we inferred inconclusive population growth patterns for the Kappa and Eta variants due to their sporadic introductions in the region. Non-pharmaceutical interventions imposed between mid-2020 and early 2021 likely played a role in reducing the epidemic progression of the Beta and the Alpha variants. In comparison, the combination of the non-pharmaceutical interventions and the rapid rollout of vaccination might have shaped Delta variant dynamics. We found that the Alpha and Beta variants were frequently introduced into the Arab peninsula between mid-2020 and early 2021 from Europe and Africa, respectively, whereas the Delta variant was frequently introduced between early 2021 and mid-2021 from East Asia. For these three variants, we also revealed significant and intense dispersal routes between the Arab region and Africa, Europe, Asia, and Oceania. In contrast, the restricted spread and stable effective population size of the Kappa and the Eta variants suggest that they no longer need to be targeted in genomic surveillance activities in the region. In contrast, the evolutionary characteristics of the Alpha, Beta, and Delta variants confirm the dominance of these variants in the recent outbreaks. Our study highlights the urgent need to establish regional molecular surveillance programs to ensure effective decision making related to the allocation of intervention activities targeted toward the most relevant variants.

14.
Nat Ecol Evol ; 6(2): 174-182, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087217

RESUMO

Hunting can fundamentally alter wildlife population dynamics but the consequences of hunting on pathogen transmission and evolution remain poorly understood. Here, we present a study that leverages a unique landscape-scale quasi-experiment coupled with pathogen-transmission tracing, network simulation and phylodynamics to provide insights into how hunting shapes feline immunodeficiency virus (FIV) dynamics in puma (Puma concolor). We show that removing hunting pressure enhances the role of males in transmission, increases the viral population growth rate and increases the role of evolutionary forces on the pathogen compared to when hunting was reinstated. Changes in transmission observed with the removal of hunting could be linked to short-term social changes while the male puma population increased. These findings are supported through comparison with a region with stable hunting management over the same time period. This study shows that routine wildlife management can have impacts on pathogen transmission and evolution not previously considered.


Assuntos
Vírus da Imunodeficiência Felina , Puma , Animais , Animais Selvagens , Feminino , Vírus da Imunodeficiência Felina/fisiologia , Masculino , Comportamento Predatório , Puma/fisiologia , Puma/virologia , Fenômenos Fisiológicos Virais
15.
PLoS One ; 17(1): e0262997, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35073375

RESUMO

Acute coronary syndromes (ACS) are a leading cause of deaths worldwide, yet the diagnosis and treatment of this group of diseases represent a significant challenge for clinicians. The epidemiology of ACS is extremely complex and the relationship between ACS and patient risk factors is typically non-linear and highly variable across patient lifespan. Here, we aim to uncover deeper insights into the factors that shape ACS outcomes in hospitals across four Arabian Gulf countries. Further, because anemia is one of the most observed comorbidities, we explored its role in the prognosis of most prevalent ACS in-hospital outcomes (mortality, heart failure, and bleeding) in the region. We used a robust multi-algorithm interpretable machine learning (ML) pipeline, and 20 relevant risk factors to fit predictive models to 4,044 patients presenting with ACS between 2012 and 2013. We found that in-hospital heart failure followed by anemia was the most important predictor of mortality. However, anemia was the first most important predictor for both in-hospital heart failure, and bleeding. For all in-hospital outcome, anemia had remarkably non-linear relationships with both ACS outcomes and patients' baseline characteristics. With minimal statistical assumptions, our ML models had reasonable predictive performance (AUCs > 0.75) and substantially outperformed commonly used statistical and risk stratification methods. Moreover, our pipeline was able to elucidate ACS risk of individual patients based on their unique risk factors. Fully interpretable ML approaches are rarely used in clinical settings, particularly in the Middle East, but have the potential to improve clinicians' prognostic efforts and guide policymakers in reducing the health and economic burdens of ACS worldwide.


Assuntos
Síndrome Coronariana Aguda , Mortalidade Hospitalar , Aprendizado de Máquina , Modelos Cardiovasculares , Admissão do Paciente , Sistema de Registros , Síndrome Coronariana Aguda/mortalidade , Síndrome Coronariana Aguda/terapia , Idoso , Anemia/mortalidade , Anemia/terapia , Comorbidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oriente Médio/epidemiologia , Medição de Risco
16.
Conserv Biol ; 36(1): e13719, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33586245

RESUMO

Parasite success typically depends on a close relationship with one or more hosts; therefore, attributes of parasitic infection have the potential to provide indirect details of host natural history and are biologically relevant to animal conservation. Characterization of parasite infections has been useful in delineating host populations and has served as a proxy for assessment of environmental quality. In other cases, the utility of parasites is just being explored, for example, as indicators of host connectivity. Innovative studies of parasite biology can provide information to manage major conservation threats by using parasite assemblage, prevalence, or genetic data to provide insights into the host. Overexploitation, habitat loss and fragmentation, invasive species, and climate change are major threats to animal conservation, and all of these can be informed by parasites.


Los Parásitos como Herramienta de Conservación Resumen El éxito de los parásitos depende típicamente de la relación cercana con uno o más hospederos; por lo tanto, las características de la infección parasitaria tienen potencial para proporcionar detalles indirectos de la historia natural del hospedero y son biológicamente relevantes para la conservación animal. La caracterización de las infecciones parasitarias ha sido útil para definir a las poblaciones hospederas y ha servido como sustituto para la evaluación de la calidad ambiental. Los estudios innovadores de la biología de parásitos pueden proporcionar información para manejar las principales amenazas a la conservación mediante la información proporcionada por el conjunto de parásitos, su prevalencia o genética que proporciona conocimiento sobre el hospedero. La sobreexplotación, la pérdida del hábitat y la fragmentación, las especies invasoras y el cambio climático son las principales amenazas para la conservación animal y a todas pueden ser informadas mediante los parásitos.


Assuntos
Parasitos , Animais , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Espécies Introduzidas
18.
PLoS Negl Trop Dis ; 15(10): e0009825, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34597323

RESUMO

Toxoplasmosis gondii exposure has been linked to increased impulsivity and risky behaviors, which has implications for eating behavior. Impulsivity and risk tolerance is known to be related with worse diets and a higher chance of obesity. There is little known, however, about the independent link between Toxoplasma gondii (T. gondii) exposure and diet-related outcomes. Using linear and quantile regression, we estimated the relationship between T. gondii exposure and BMI, total energy intake (kcal), and diet quality as measured by the Health Eating Index-2015 (HEI) among 9,853 adults from the 2009-2014 National Health and Nutrition Examination Survey. Previous studies have shown different behavioral responses to T. gondii infection among males and females, and socioeconomic factors are also likely to be important as both T. gondii and poor diet are more prevalent among U.S. populations in poverty. We therefore measured the associations between T. gondii and diet-related outcomes separately for men and women and for respondents in poverty. Among females <200% of the federal poverty level Toxoplasmosis gondii exposure was associated with a higher BMI by 2.0 units (95% CI [0.22, 3.83]) at median BMI and a lower HEI by 5.05 units (95% CI [-7.87, -2.24]) at the 25th percentile of HEI. Stronger associations were found at higher levels of BMI and worse diet quality among females. No associations were found among males. Through a detailed investigation of mechanisms, we were able to rule out T. gondii exposure from cat ownership, differing amounts of meat, and drinking water source as potential confounding factors; environmental exposure to T. gondii as well as changes in human behavior due to parasitic infection remain primary mechanisms.


Assuntos
Índice de Massa Corporal , Obesidade/parasitologia , Toxoplasmose/fisiopatologia , Adulto , Estudos Transversais , Dieta , Feminino , Humanos , Masculino , Inquéritos Nutricionais , Obesidade/economia , Obesidade/metabolismo , Obesidade/fisiopatologia , Pobreza , Toxoplasma/genética , Toxoplasma/isolamento & purificação , Toxoplasmose/economia , Toxoplasmose/metabolismo , Toxoplasmose/parasitologia , Adulto Jovem
19.
Mol Ecol Resour ; 21(8): 2766-2781, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34448358

RESUMO

We introduce a new R package "MrIML" ("Mister iml"; Multi-response Interpretable Machine Learning). MrIML provides a powerful and interpretable framework that enables users to harness recent advances in machine learning to quantify multilocus genomic relationships, to identify loci of interest for future landscape genetics studies, and to gain new insights into adaptation across environmental gradients. Relationships between genetic variation and environment are often nonlinear and interactive; these characteristics have been challenging to address using traditional landscape genetic approaches. Our package helps capture this complexity and offers functions that fit and interpret a wide range of highly flexible models that are routinely used for single-locus landscape genetics studies but are rarely extended to estimate response functions for multiple loci. To demonstrate the package's broad functionality, we test its ability to recover landscape relationships from simulated genomic data. We also apply the package to two empirical case studies. In the first, we model genetic variation of North American balsam poplar (Populus balsamifera, Salicaceae) populations across environmental gradients. In the second case study, we recover the landscape and host drivers of feline immunodeficiency virus genetic variation in bobcats (Lynx rufus). The ability to model thousands of loci collectively and compare models from linear regression to extreme gradient boosting, within the same analytical framework, has the potential to be transformative. The MrIML framework is also extendable and not limited to modelling genetic variation; for example, it can quantify the environmental drivers of microbiomes and coinfection dynamics.


Assuntos
Lynx , Populus , Adaptação Fisiológica , Animais , Genômica , Aprendizado de Máquina
20.
Virology ; 562: 176-189, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34364185

RESUMO

Anellovirus infections are highly prevalent in mammals, however, prior to this study only a handful of anellovirus genomes had been identified in members of the Felidae family. Here we characterise anelloviruses in pumas (Puma concolor), bobcats (Lynx rufus), Canada lynx (Lynx canadensis), caracals (Caracal caracal) and domestic cats (Felis catus). The complete anellovirus genomes (n = 220) recovered from 149 individuals were diverse. ORF1 protein sequence similarity network analysis coupled with phylogenetic analysis, revealed two distinct clusters that are populated by felid-derived anellovirus sequences, a pattern mirroring that observed for the porcine anelloviruses. Of the two-felid dominant anellovirus groups, one includes sequences from bobcats, pumas, domestic cats and an ocelot, and the other includes sequences from caracals, Canada lynx, domestic cats and pumas. Coinfections of diverse anelloviruses appear to be common among the felids. Evidence of recombination, both within and between felid-specific anellovirus groups, supports a long coevolution history between host and virus.


Assuntos
Anelloviridae/genética , Felidae/virologia , Anelloviridae/classificação , Animais , Coevolução Biológica , Coinfecção/veterinária , Coinfecção/virologia , DNA Viral/genética , Felidae/classificação , Variação Genética , Genoma Viral/genética , Fases de Leitura Aberta , Filogenia , Recombinação Genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...